organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Ethyl-N'-[(E)-4-hydroxybenzylidene]-7methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide

Farah Deeba,^a* Misbahul Ain Khan,^b Muhammad Zia-ur-Rehman,^a Nagihan Çaylak^c and Ertan Şahin^d

^aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan, ^bDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, ^cDepartment of Physics, Sakarya University, Sakarya, Turkey, and ^dDepartment of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey

Correspondence e-mail: farahdeeba.pcsir@gmail.com

Received 10 March 2009; accepted 12 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.151; data-to-parameter ratio = 14.7.

In the crystal structure of the title compound, $C_{19}H_{18}N_4O_3$, the fused-ring system is essentially planar [maximum deviation is 0.031 (2) Å] while the dihedral angle between the ring system and the benzene ring is $12.64 (6)^{\circ}$. The carbohydrazide H atom is involved in an intramolecular N-H···O hydrogen bond, forming a six-membered hydrogen-bonded ring. The molecules arrange themselves into centrosymmetric dimers by means of intermolecular O-H···O hydrogen bonds.

Related literature

For the synthesis of heterocyclic compounds, see: Chen et al. (2001); Zia-ur-Rehman et al. (2006, 2009). For their biological activity, see: Ferrarini et al. (2000); Gavrilova & Bosnich (2004); Goswami & Mukherjee (1997); Hoock et al. (1999); Mintert & Sheldrick (1995); Nakatani et al. (2000); Nakataniz et al. (2001); Roma et al. (2000). For similar molecules, see: Catalano et al. (2000).

Experimental

Crystal data

C19H18N4O3 V = 1736.72 (7) Å³ $M_r = 350.37$ Z = 4Monoclinic, $P2_1/c$ Mo Ka radiation $\mu = 0.09 \text{ mm}^$ a = 7.6437 (2) Å b = 13.3290(2) Å T = 293 Kc = 17.2212 (4) Å $0.2 \times 0.14 \times 0.1 \text{ mm}$ $\beta = 98.1745 \ (14)^{\circ}$

Data collection

Rigaku R-AXIS RAPID-S diffractometer Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.990, T_{\max} = 0.991$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of
$wR(F^2) = 0.151$	independent and constrained
S = 1.04	refinement
3583 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
244 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

35553 measured reflections

 $R_{\rm int} = 0.064$

3583 independent reflections

2597 reflections with $I > 2\sigma(I)$

Table 1

```
Hydrogen-bond geometry (Å, °).
```

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overrightarrow{N3-H3N\cdotsO1}\\O3-H3O\cdotsO2^{i}$	0.91 (2) 0.82	1.91 (2) 1.90	2.660 (3) 2.721 (3)	139 (2) 179
	4	1		

Symmetry code: (i) -x, -y - 1, -z + 1.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Department of Chemistry, Atatürk University, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 from the University Research Fund.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2560).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Catalano, V. J., Kar, H. M. & Bennett, B. L. (2000). Inorg. Chem. 39, 121-127. Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med.
- Chem. 44, 2374-2378.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem. 35, 815-819. Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-383.
- Goswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619-1622.
- Hoock, C., Reichert, J. & Schmidtke, M. (1999). Molecules, 4, 264-271.
- Mintert, M. & Sheldrick, W. S. (1995). J. Chem. Soc. Dalton Trans. pp. 2663-2669.
- Nakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172-2177. Nakataniz, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. (2001). J. Am. Chem. Soc. 123, 12650-12657.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.
- Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). *Eur. J. Med. Chem.* 44, 1311–1316.

supplementary materials

Acta Cryst. (2009). E65, o860-o861 [doi:10.1107/S1600536809009167]

1-Ethyl-*N*'-[(*E*)-4-hydroxybenzylidene]-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbo-hydrazide

F. Deeba, M. A. Khan, M. Zia-ur-Rehman, N. Çaylak and E. Sahin

Comment

Derivatives of 1,8-naphthyridine have been investigated since a long ago due to their interesting complexation properties and medical uses. Such compounds are known to possess antibacterial (Chen *et al.*, 2001), anti-inflammatory (Roma *et al.*, 2000), anti-hypertensive, and anti-platelet activities (Ferrarini *et al.*, 2000). These have also been widely utilized as molecular recognition receptors for urea, carboxylic acids and guanine (Goswami *et al.*, 1997; Nakatani *et al.*, 2000). Few 1,8-naphthyridine derivatives have been reported to be excellent fluorescent markers of nucleic acids (Hoock *et al.*, 1999) and probe molecules (Nakataniz *et al.*, 2001). In addition, these have received much attention due to the possibility of their linkage with metals in several coordination modes such as monodentate, chelating bidentate, and dinuclear bridging binding fashion (Gavrilova & Bosnich, 2004; Mintert & Sheldrick, 1995).

In continuation of our work on the synthesis, biological activity and crystal structures of various heterocyclic compounds (Zia-ur-Rehman *et al.*, 2006; Zia-ur-Rehman *et al.*, 2009), we herein report the synthesis and crystal structure of the title compound (I) (Scheme and figure 1). The structure of the basic naphthyridine ring consisting of two adjoined pyridine rings is planar while carbonyl oxygen O1 on C11 is involved in intramolecular hydrogen bonding giving rise to a six-membered hydrogen bond ring (Table 1). All bond distances are essentially identical to those found in the literature (Catalano *et al.*, 2000). The molecules form centrosymmetric dimers through intermolecular O—H…O hydrogen bonds.

Experimental

A mixture of 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (10.0 mmoles; 2.46 g), 4-hydroxy benzaldehyde (11.0 mmoles; 1.34 g), *ortho* phosphoric acid (2 drops) and ethyl alcohol (20.0 ml) was refluxed for a period of two hours. After completion of the reaction as indicated by TLC, three fourth of the solvent was evaporated and the contents were cooled to room temperature. Crystals obtained were washed with cold ethanol and dried; Yield: 92%.

Refinement

H atoms were placed in geometrically idealized positions (C—H = 0.93-0.98 Å, O—H=0.82 Å) and treated as riding, with $U_{iso}(H)=1.2U_{eq}(C)$ (for methine and methylene) or $1.5U_{eq}$ (methyl and hydroxyl). The N3 and C13 H atoms were located in a difference Fourier map

Figures

Fig. 1. An *ORTEP-3* (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

1-Ethyl-*N*'-[(*E*)-4-hydroxybenzylidene]-7-methyl-4-oxo-1,4- dihydro-1,8-naphthyridine-3-carbohydrazide

Crystal data	
$C_{19}H_{18}N_4O_3$	$F_{000} = 736$
$M_r = 350.37$	$D_{\rm x} = 1.34 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3643 reflections
a = 7.6437 (2) Å	$\theta = 2.4 - 26.4^{\circ}$
<i>b</i> = 13.3290 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 17.2212 (4) Å	T = 293 K
$\beta = 98.1745 \ (14)^{\circ}$	Prism, light yellow
V = 1736.72 (7) Å ³	$0.2\times0.14\times0.1~mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID-S diffractometer	3583 independent reflections
Monochromator: graphite	2597 reflections with $I > 2\sigma(I)$
Detector resolution: 10.0000 pixels mm ⁻¹	$R_{\rm int} = 0.064$
T = 293 K	$\theta_{\text{max}} = 26.7^{\circ}$
ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (Blessing, 1995)	$h = -8 \rightarrow 9$
$T_{\min} = 0.990, \ T_{\max} = 0.991$	$k = -16 \rightarrow 16$
35553 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.151$	$w = 1/[\sigma^2(F_o^2) + (0.0654P)^2 + 0.3979P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$

3583 reflections

 $\Delta \rho_{\text{max}} = 0.15 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.16 \text{ e Å}^{-3}$

244 parameters

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.2080 (2)	0.01852 (11)	0.57270 (8)	0.0654 (4)
O3	-0.1795 (2)	-0.65000 (11)	0.71180 (9)	0.0686 (4)
НЗО	-0.1729	-0.6919	0.6775	0.103*
N1	0.4591 (2)	0.22498 (12)	0.39012 (10)	0.0556 (4)
N3	0.1243 (2)	-0.16773 (13)	0.52592 (10)	0.0554 (4)
N4	0.0658 (2)	-0.26173 (12)	0.54348 (10)	0.0554 (4)
O2	0.1598 (2)	-0.20967 (11)	0.40138 (9)	0.0750 (5)
N2	0.3819 (2)	0.05987 (12)	0.36073 (9)	0.0532 (4)
C17	-0.1341 (3)	-0.55811 (15)	0.68611 (11)	0.0524 (5)
C14	-0.0321 (3)	-0.36963 (14)	0.63803 (11)	0.0517 (5)
C11	0.2538 (3)	0.03007 (14)	0.50649 (11)	0.0505 (5)
C10	0.2423 (3)	-0.04590 (14)	0.44689 (11)	0.0493 (5)
C16	-0.1130 (3)	-0.54200 (15)	0.60834 (11)	0.0567 (5)
H16	-0.1315	-0.594	0.5721	0.068*
C9	0.3081 (3)	-0.02682 (15)	0.37834 (12)	0.0544 (5)
Н9	0.3009	-0.0779	0.3413	0.065*
C13	0.0289 (3)	-0.27273 (16)	0.61292 (12)	0.0561 (5)
C15	-0.0647 (3)	-0.44868 (15)	0.58534 (11)	0.0590 (5)
H15	-0.0533	-0.438	0.5329	0.071*
C6	0.3892 (3)	0.13908 (14)	0.41286 (11)	0.0494 (5)
C18	-0.1077 (3)	-0.48014 (16)	0.73924 (11)	0.0580 (5)
H18	-0.1243	-0.4903	0.7911	0.07*
C5	0.3272 (3)	0.12561 (14)	0.48473 (11)	0.0500 (5)
C2	0.4702 (3)	0.30211 (15)	0.43905 (13)	0.0586 (5)
C12	0.1715 (3)	-0.14835 (14)	0.45515 (12)	0.0539 (5)
C19	-0.0567 (3)	-0.38686 (15)	0.71523 (11)	0.0562 (5)
H19	-0.0385	-0.3348	0.7515	0.067*
C1	0.5445 (3)	0.39767 (17)	0.41103 (15)	0.0736 (7)

supplementary materials

H1A	0.5764	0.3875	0.3597	0.11*
H1C	0.6474	0.4168	0.4466	0.11*
H1B	0.4573	0.4498	0.4089	0.11*
C4	0.3414 (3)	0.20843 (16)	0.53477 (13)	0.0648 (6)
H4	0.3023	0.2041	0.5834	0.078*
C3	0.4127 (4)	0.29585 (17)	0.51221 (13)	0.0716 (6)
Н3	0.4229	0.3511	0.5456	0.086*
C7	0.4608 (3)	0.06988 (18)	0.28730 (12)	0.0679 (6)
H7A	0.4911	0.0038	0.2698	0.082*
H7B	0.5691	0.1086	0.2979	0.082*
C8	0.3387 (4)	0.1199 (3)	0.22344 (15)	0.1028 (10)
H8B	0.3956	0.1254	0.1774	0.154*
H8C	0.3093	0.1857	0.2403	0.154*
H8A	0.2328	0.0808	0.2116	0.154*
H13	0.045 (3)	-0.2191 (17)	0.6511 (13)	0.067 (6)*
H3N	0.131 (3)	-0.1174 (17)	0.5616 (13)	0.070 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0978 (11)	0.0566 (9)	0.0456 (8)	-0.0032 (8)	0.0238 (8)	0.0018 (6)
O3	0.1010 (12)	0.0523 (8)	0.0579 (9)	-0.0040 (8)	0.0296 (9)	0.0053 (7)
N1	0.0569 (10)	0.0537 (10)	0.0566 (10)	-0.0026 (8)	0.0098 (8)	0.0042 (8)
N3	0.0732 (11)	0.0448 (9)	0.0499 (10)	-0.0026 (8)	0.0139 (8)	0.0024 (8)
N4	0.0676 (11)	0.0446 (9)	0.0551 (10)	-0.0016 (8)	0.0125 (8)	0.0040 (7)
O2	0.1160 (14)	0.0533 (9)	0.0596 (9)	-0.0130 (8)	0.0259 (9)	-0.0086 (7)
N2	0.0632 (10)	0.0529 (9)	0.0466 (9)	-0.0036 (8)	0.0186 (7)	-0.0010 (7)
C17	0.0623 (12)	0.0483 (11)	0.0491 (11)	0.0007 (9)	0.0159 (9)	0.0051 (8)
C14	0.0608 (12)	0.0479 (10)	0.0481 (11)	-0.0006 (9)	0.0131 (9)	0.0019 (8)
C11	0.0581 (12)	0.0503 (11)	0.0436 (10)	0.0056 (9)	0.0093 (8)	0.0023 (8)
C10	0.0561 (11)	0.0473 (10)	0.0452 (10)	0.0009 (8)	0.0090 (8)	0.0025 (8)
C16	0.0767 (14)	0.0502 (11)	0.0454 (11)	-0.0023 (10)	0.0165 (10)	-0.0024 (8)
C9	0.0658 (13)	0.0496 (11)	0.0492 (11)	-0.0001 (9)	0.0132 (9)	-0.0043 (9)
C13	0.0698 (14)	0.0492 (11)	0.0507 (12)	0.0003 (10)	0.0130 (10)	-0.0005 (9)
C15	0.0837 (15)	0.0531 (12)	0.0438 (11)	-0.0039 (10)	0.0210 (10)	0.0011 (9)
C6	0.0526 (11)	0.0486 (10)	0.0472 (10)	0.0016 (8)	0.0082 (8)	0.0019 (8)
C18	0.0748 (14)	0.0598 (12)	0.0422 (10)	0.0000 (10)	0.0186 (9)	0.0041 (9)
C5	0.0579 (11)	0.0487 (11)	0.0439 (10)	0.0003 (9)	0.0084 (8)	0.0012 (8)
C2	0.0617 (13)	0.0507 (12)	0.0619 (13)	-0.0030 (9)	0.0038 (10)	0.0032 (10)
C12	0.0644 (13)	0.0476 (11)	0.0505 (11)	0.0016 (9)	0.0109 (9)	-0.0002 (9)
C19	0.0724 (13)	0.0526 (11)	0.0454 (10)	-0.0008 (10)	0.0143 (9)	-0.0043 (9)
C1	0.0827 (16)	0.0550 (13)	0.0837 (17)	-0.0096 (11)	0.0138 (13)	0.0068 (12)
C4	0.0901 (16)	0.0577 (13)	0.0476 (11)	-0.0027 (11)	0.0130 (11)	-0.0034 (9)
C3	0.1043 (19)	0.0523 (12)	0.0586 (13)	-0.0098 (12)	0.0126 (12)	-0.0079 (10)
C7	0.0866 (16)	0.0671 (14)	0.0573 (13)	-0.0084 (12)	0.0348 (12)	-0.0037 (10)
C8	0.111 (2)	0.144 (3)	0.0552 (15)	-0.011 (2)	0.0182 (15)	0.0164 (17)

Geometric parameters (Å, °)

O1—C11	1.249 (2)	C16—H16	0.93
O3—C17	1.364 (2)	С9—Н9	0.93
O3—H3O	0.82	С13—Н13	0.97 (2)
N1—C2	1.324 (3)	С15—Н15	0.93
N1—C6	1.345 (2)	C6—C5	1.398 (3)
N3—C12	1.344 (3)	C18—C19	1.384 (3)
N3—N4	1.378 (2)	C18—H18	0.93
N3—H3N	0.91 (2)	C5—C4	1.395 (3)
N4—C13	1.275 (3)	C2—C3	1.394 (3)
O2—C12	1.229 (2)	C2—C1	1.502 (3)
N2—C9	1.340 (3)	С19—Н19	0.93
N2—C6	1.382 (2)	C1—H1A	0.96
N2—C7	1.482 (2)	C1—H1C	0.96
C17—C18	1.380 (3)	C1—H1B	0.96
C17—C16	1.388 (3)	C4—C3	1.366 (3)
C14—C19	1.388 (3)	C4—H4	0.93
C14—C15	1.390 (3)	С3—Н3	0.93
C14—C13	1.460 (3)	С7—С8	1.495 (4)
C11—C10	1.436 (3)	С7—Н7А	0.97
C11—C5	1.462 (3)	С7—Н7В	0.97
С10—С9	1.371 (3)	C8—H8B	0.96
C10—C12	1.483 (3)	C8—H8C	0.96
C16—C15	1.372 (3)	С8—Н8А	0.96
С17—О3—НЗО	109.5	C19—C18—H18	120
C17—O3—H3O C2—N1—C6	109.5 117.86 (17)	C19—C18—H18 C4—C5—C6	120 116.04 (18)
C17—O3—H3O C2—N1—C6 C12—N3—N4	109.5 117.86 (17) 120.71 (17)	C19—C18—H18 C4—C5—C6 C4—C5—C11	120 116.04 (18) 121.99 (18)
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N	109.5 117.86 (17) 120.71 (17) 118.4 (15)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11	120 116.04 (18) 121.99 (18) 121.97 (17)
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19)
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14) 115.59 (17)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2)
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3 C9—N2—C6	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14) 115.59 (17) 119.42 (16)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2)
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3 C9—N2—C6 C9—N2—C7	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14) 115.59 (17) 119.42 (16) 120.42 (17)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19)
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3 C9—N2—C6 C9—N2—C7 C6—N2—C7	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14) 115.59 (17) 119.42 (16) 120.42 (17) 120.13 (16)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19) 121.92 (18)
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3 C9—N2—C6 C9—N2—C7 C6—N2—C7 O3—C17—C18	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14) 115.59 (17) 119.42 (16) 120.42 (17) 120.13 (16) 118.75 (17)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 N3—C12—C10	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19) 121.92 (18) 114.36 (17)
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3 C9—N2—C6 C9—N2—C7 C6—N2—C7 O3—C17—C18 O3—C17—C16	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14) 115.59 (17) 119.42 (16) 120.42 (17) 120.13 (16) 118.75 (17) 121.44 (18)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 N3—C12—C10 C18—C19—C14	$120 \\116.04 (18) \\121.99 (18) \\121.97 (17) \\121.92 (19) \\116.5 (2) \\121.5 (2) \\123.72 (19) \\121.92 (18) \\114.36 (17) \\121.14 (19) \\121.14 (19) \\121.14 (19) \\1116.5 (18) \\1116.5 \\11$
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3 C9—N2—C6 C9—N2—C7 C6—N2—C7 O3—C17—C18 O3—C17—C16 C18—C17—C16	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14) 115.59 (17) 119.42 (16) 120.42 (17) 120.13 (16) 118.75 (17) 121.44 (18) 119.80 (18)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 N3—C12—C10 C18—C19—C14 C18—C19—H19	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19) 121.92 (18) 114.36 (17) 121.14 (19) 119.4
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3 C9—N2—C6 C9—N2—C7 C6—N2—C7 O3—C17—C18 O3—C17—C16 C18—C17—C16 C19—C14—C15	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14) 115.59 (17) 119.42 (16) 120.42 (17) 120.13 (16) 118.75 (17) 121.44 (18) 119.80 (18) 117.65 (18)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 N3—C12—C10 C18—C19—C14 C18—C19—H19 C14—C19—H19	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19) 121.92 (18) 114.36 (17) 121.14 (19) 119.4 119.4
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3 C9—N2—C6 C9—N2—C7 C6—N2—C7 O3—C17—C18 O3—C17—C18 C18—C17—C16 C18—C17—C16 C19—C14—C15 C19—C14—C13	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14) 115.59 (17) 119.42 (16) 120.42 (17) 120.13 (16) 118.75 (17) 121.44 (18) 119.80 (18) 117.65 (18) 121.51 (18)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 N3—C12—C10 C18—C19—C14 C18—C19—H19 C14—C19—H19 C2—C1—H1A	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19) 121.92 (18) 114.36 (17) 121.14 (19) 119.4 119.4 109.5
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3 C9—N2—C6 C9—N2—C7 C6—N2—C7 O3—C17—C18 O3—C17—C16 C18—C17—C16 C19—C14—C15 C19—C14—C13 C15—C14—C13	109.5 117.86 (17) 120.71 (17) 118.4 (15) 120.9 (14) 115.59 (17) 119.42 (16) 120.42 (17) 120.13 (16) 118.75 (17) 121.44 (18) 119.80 (18) 117.65 (18) 121.51 (18) 120.84 (18)	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 N3—C12—C10 C18—C19—C14 C18—C19—H19 C14—C19—H19 C2—C1—H1A C2—C1—H1A	$120 \\116.04 (18) \\121.99 (18) \\121.97 (17) \\121.92 (19) \\116.5 (2) \\121.5 (2) \\123.72 (19) \\121.92 (18) \\114.36 (17) \\121.14 (19) \\119.4 \\119.4 \\109.5 \\100.5 \\10$
C17—O3—H3O C2—N1—C6 C12—N3—N4 C12—N3—H3N N4—N3—H3N C13—N4—N3 C9—N2—C6 C9—N2—C7 C6—N2—C7 O3—C17—C18 O3—C17—C18 O3—C17—C16 C18—C17—C16 C19—C14—C13 C15—C14—C13 O1—C11—C10	109.5 $117.86 (17)$ $120.71 (17)$ $118.4 (15)$ $120.9 (14)$ $115.59 (17)$ $119.42 (16)$ $120.42 (17)$ $120.13 (16)$ $118.75 (17)$ $121.44 (18)$ $119.80 (18)$ $117.65 (18)$ $121.51 (18)$ $120.84 (18)$ $124.68 (18)$	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 N3—C12—C10 C18—C19—C14 C18—C19—H19 C14—C19—H19 C2—C1—H1A C2—C1—H1C H1A—C1—H1C	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19) 121.92 (18) 114.36 (17) 121.14 (19) 119.4 119.4 109.5 109.5
$\begin{array}{c} C17-O3-H3O\\ C2-N1-C6\\ C12-N3-N4\\ C12-N3-H3N\\ N4-N3-H3N\\ C13-N4-N3\\ C9-N2-C6\\ C9-N2-C7\\ C6-N2-C7\\ O3-C17-C18\\ O3-C17-C18\\ O3-C17-C16\\ C18-C17-C16\\ C18-C17-C16\\ C19-C14-C15\\ C19-C14-C13\\ C15-C14-C13\\ O1-C11-C10\\ O1-C11-C5\\ \end{array}$	109.5 $117.86 (17)$ $120.71 (17)$ $118.4 (15)$ $120.9 (14)$ $115.59 (17)$ $119.42 (16)$ $120.42 (17)$ $120.13 (16)$ $118.75 (17)$ $121.44 (18)$ $119.80 (18)$ $117.65 (18)$ $121.51 (18)$ $120.84 (18)$ $124.68 (18)$ $120.61 (18)$	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—N3 O2—C12—C10 N3—C12—C10 C18—C19—C14 C18—C19—H19 C14—C19—H19 C2—C1—H1A C2—C1—H1C H1A—C1—H1C C2—C1—H1B	120 $116.04 (18)$ $121.99 (18)$ $121.97 (17)$ $121.92 (19)$ $116.5 (2)$ $121.5 (2)$ $123.72 (19)$ $121.92 (18)$ $114.36 (17)$ $121.14 (19)$ 119.4 119.4 109.5 109.5 109.5 109.5
$\begin{array}{c} C17-O3-H3O\\ C2-N1-C6\\ C12-N3-N4\\ C12-N3-H3N\\ N4-N3-H3N\\ C13-N4-N3\\ C9-N2-C6\\ C9-N2-C7\\ C6-N2-C7\\ O3-C17-C18\\ O3-C17-C18\\ O3-C17-C16\\ C18-C17-C16\\ C19-C14-C15\\ C19-C14-C15\\ C19-C14-C13\\ O1-C11-C10\\ O1-C11-C5\\ C10-C11-C5\\ C10-C11-C5\\ C10-C11-C5\\ \end{array}$	109.5 $117.86 (17)$ $120.71 (17)$ $118.4 (15)$ $120.9 (14)$ $115.59 (17)$ $119.42 (16)$ $120.42 (17)$ $120.13 (16)$ $118.75 (17)$ $121.44 (18)$ $119.80 (18)$ $117.65 (18)$ $121.51 (18)$ $120.84 (18)$ $124.68 (18)$ $120.61 (18)$ $114.70 (16)$	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 C18—C19—C14 C18—C19—H19 C14—C19—H19 C2—C1—H1A C2—C1—H1A C2—C1—H1B H1A—C1—H1B	$120 \\116.04 (18) \\121.99 (18) \\121.97 (17) \\121.92 (19) \\116.5 (2) \\121.5 (2) \\123.72 (19) \\121.92 (18) \\114.36 (17) \\121.14 (19) \\119.4 \\119.4 \\109.5 \\100.5 \\10$
$\begin{array}{c} C17-O3-H3O\\ C2-N1-C6\\ C12-N3-N4\\ C12-N3-H3N\\ C12-N3-H3N\\ C13-N4-N3\\ C9-N2-C6\\ C9-N2-C7\\ C6-N2-C7\\ O3-C17-C18\\ O3-C17-C16\\ C18-C17-C16\\ C18-C17-C16\\ C19-C14-C13\\ C15-C14-C13\\ C15-C14-C13\\ O1-C11-C10\\ O1-C11-C5\\ C19-C10-C11\\ \end{array}$	109.5 $117.86 (17)$ $120.71 (17)$ $118.4 (15)$ $120.9 (14)$ $115.59 (17)$ $119.42 (16)$ $120.42 (17)$ $120.13 (16)$ $118.75 (17)$ $121.44 (18)$ $119.80 (18)$ $117.65 (18)$ $121.51 (18)$ $120.84 (18)$ $124.68 (18)$ $120.61 (18)$ $114.70 (16)$ $119.47 (18)$	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 N3—C12—C10 C18—C19—C14 C18—C19—H19 C14—C19—H19 C2—C1—H1A C2—C1—H1C H1A—C1—H1C C2—C1—H1B H1A—C1—H1B H1C—C1—H1B	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19) 121.92 (18) 114.36 (17) 121.14 (19) 119.4 119.4 109.5 109.5 109.5 109.5 109.5
C17-O3-H3O C2-N1-C6 C12-N3-N4 C12-N3-H3N N4-N3-H3N C13-N4-N3 C9-N2-C6 C9-N2-C7 C6-N2-C7 O3-C17-C18 O3-C17-C18 O3-C17-C16 C18-C17-C16 C18-C17-C16 C19-C14-C13 C15-C14-C13 O1-C11-C10 O1-C11-C5 C10-C11-C5 C9-C10-C11 C9-C10-C12	109.5 $117.86 (17)$ $120.71 (17)$ $118.4 (15)$ $120.9 (14)$ $115.59 (17)$ $119.42 (16)$ $120.42 (17)$ $120.13 (16)$ $118.75 (17)$ $121.44 (18)$ $119.80 (18)$ $117.65 (18)$ $121.51 (18)$ $120.84 (18)$ $124.68 (18)$ $120.61 (18)$ $114.70 (16)$ $119.47 (18)$ $115.90 (17)$	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—N3 O2—C12—C10 N3—C12—C10 C18—C19—C14 C18—C19—H19 C14—C19—H19 C2—C1—H1A C2—C1—H1A C2—C1—H1C H1A—C1—H1C C2—C1—H1B H1A—C1—H1B H1A—C1—H1B C3—C4—C5	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19) 121.92 (18) 114.36 (17) 121.14 (19) 119.4 119.4 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C17-O3-H3O C2-N1-C6 C12-N3-N4 C12-N3-H3N N4-N3-H3N C13-N4-N3 C9-N2-C6 C9-N2-C7 C6-N2-C7 O3-C17-C18 O3-C17-C18 O3-C17-C16 C18-C17-C16 C19-C14-C15 C19-C14-C15 C19-C14-C13 O1-C11-C10 O1-C11-C5 C10-C11-C5 C9-C10-C12 C11-C10-C12	109.5 $117.86 (17)$ $120.71 (17)$ $118.4 (15)$ $120.9 (14)$ $115.59 (17)$ $119.42 (16)$ $120.42 (17)$ $120.13 (16)$ $118.75 (17)$ $121.44 (18)$ $119.80 (18)$ $117.65 (18)$ $121.51 (18)$ $120.84 (18)$ $124.68 (18)$ $120.61 (18)$ $114.70 (16)$ $119.47 (18)$ $115.90 (17)$ $124.54 (17)$	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 N3—C12—C10 C18—C19—C14 C18—C19—H19 C14—C19—H19 C14—C19—H19 C2—C1—H1A C2—C1—H1C H1A—C1—H1C C2—C1—H1B H1A—C1—H1B H1C—C1—H1B H1C—C1—H1B C3—C4—C5 C3—C4—H4	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19) 121.92 (18) 114.36 (17) 121.14 (19) 119.4 119.4 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.9 (2) 120.1
C17-O3-H3O C2-N1-C6 C12-N3-N4 C12-N3-H3N N4-N3-H3N C13-N4-N3 C9-N2-C6 C9-N2-C7 C6-N2-C7 O3-C17-C18 O3-C17-C16 C18-C17-C16 C19-C14-C13 C15-C14-C13 C15-C14-C13 O1-C11-C5 C10-C11-C5 C9-C10-C11 C9-C10-C12 C11-C10-C12 C15-C16-C17	109.5 $117.86 (17)$ $120.71 (17)$ $118.4 (15)$ $120.9 (14)$ $115.59 (17)$ $119.42 (16)$ $120.42 (17)$ $120.13 (16)$ $118.75 (17)$ $121.44 (18)$ $119.80 (18)$ $117.65 (18)$ $121.51 (18)$ $120.84 (18)$ $120.61 (18)$ $114.70 (16)$ $119.47 (18)$ $115.90 (17)$ $124.54 (17)$ $119.46 (18)$	C19—C18—H18 C4—C5—C6 C4—C5—C11 C6—C5—C11 N1—C2—C3 N1—C2—C1 C3—C2—C1 O2—C12—N3 O2—C12—C10 C18—C19—C14 C18—C19—H19 C14—C19—H19 C2—C1—H1A C2—C1—H1A C2—C1—H1C H1A—C1—H1C H1A—C1—H1B H1A—C1—H1B H1C—C1—H1B H1C—C1—H1B C3—C4—C5 C3—C4—H4 C5—C4—H4	120 116.04 (18) 121.99 (18) 121.97 (17) 121.92 (19) 116.5 (2) 121.5 (2) 123.72 (19) 121.92 (18) 114.36 (17) 121.14 (19) 119.4 119.4 109.5 109.

supplementary materials

C17—C16—H16	120.3		С4—С3—Н3		120.1
N2	124.95 (18)		С2—С3—Н3		120.1
N2—C9—H9	117.5		N2—C7—C8		112.4 (2)
С10—С9—Н9	117.5		N2—C7—H7A		109.1
N4—C13—C14	120.13 (19)		С8—С7—Н7А		109.1
N4—C13—H13	121.9 (13)		N2—C7—H7B		109.1
C14—C13—H13	117.9 (13)		С8—С7—Н7В		109.1
C16—C15—C14	121.96 (18)		H7A—C7—H7B		107.9
С16—С15—Н15	119		С7—С8—Н8В		109.5
C14—C15—H15	119		С7—С8—Н8С		109.5
N1—C6—N2	116.22 (17)		H8B—C8—H8C		109.5
N1—C6—C5	124.45 (18)		С7—С8—Н8А		109.5
N2—C6—C5	119.32 (17)		H8B—C8—H8A		109.5
C17—C18—C19	119.94 (18)		H8C—C8—H8A		109.5
C17—C18—H18	120				
C12—N3—N4—C13	178.2 (2)		N2—C6—C5—C4		179.03 (18)
01	-175.46(19)		N1-C6-C5-C11		-179.47(18)
C5-C11-C10-C9	3.8 (3)		N2-C6-C5-C11		-0.3 (3)
O1-C11-C10-C12	1.1 (3)		01-C11-C5-C4		-3.1 (3)
C5-C11-C10-C12	-179.61 (18)		C10-C11-C5-C4		177.57 (19)
03-C17-C16-C15	-179.0(2)		01-C11-C5-C6		176.24 (19)
C18—C17—C16—C15	0.5 (3)		C10-C11-C5-C6		-3.1 (3)
C6—N2—C9—C10	-2.4(3)		C6—N1—C2—C3		0.3 (3)
C7—N2—C9—C10	175.4 (2)		C6—N1—C2—C1		-178.45 (19)
C11—C10—C9—N2	-1.3(3)		N4—N3—C12—O2		3.0 (3)
C12—C10—C9—N2	-178.10 (19)		N4—N3—C12—C10		-176.28(17)
N3—N4—C13—C14	-179.25 (18)		C9-C10-C12-O2		-5.6 (3)
C19—C14—C13—N4	173.6 (2)		C11—C10—C12—O2		177.8 (2)
C15-C14-C13-N4	-5.2 (3)		C9-C10-C12-N3		173.73 (18)
C17—C16—C15—C14	1.4 (3)		C11—C10—C12—N3		-2.9(3)
C19—C14—C15—C16	-2.4(3)		C17—C18—C19—C14		0.4 (3)
C13—C14—C15—C16	176.5 (2)		C15—C14—C19—C18		1.5 (3)
C2—N1—C6—N2	-179.19 (17)		C13—C14—C19—C18		-177.4(2)
C2—N1—C6—C5	0.0 (3)		C6-C5-C4-C3		-0.1 (3)
C9-N2-C6-N1	-177.63(18)		C11—C5—C4—C3		179.3 (2)
C7—N2—C6—N1	4.5 (3)		C5-C4-C3-C2		0.4 (4)
C9 - N2 - C6 - C5	3 2 (3)		N1-C2-C3-C4		-0.5(4)
C7—N2—C6—C5	-174.73(19)		C1 - C2 - C3 - C4		178.2 (2)
03 - C17 - C18 - C19	178 2 (2)		C9 - N2 - C7 - C8		98.6 (3)
C16—C17—C18—C19	-1.4(3)		C6—N2—C7—C8		-83.5 (3)
N1-C6-C5-C4	-0.1(3)		00 112 07 00		0010 (0)
	0.1 (0)				
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N3—H3N…O1		0.91 (2)	1.91 (2)	2.660 (3)	139 (2)
O3—H3O…O2 ⁱ		0.82	1.90	2.721 (3)	179
				. /	

Symmetry codes: (i) -x, -y-1, -z+1.

Fig. 1